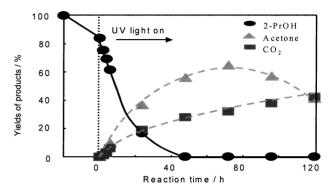
Photocatalytic Degradation of 2-Propanol Diluted in Water with TiO_2 Photocatalyst Loaded on Si_3N_4

Hiromi Yamashita,* Kazuhiro Maekawa, Yoshihiro Nakatani,† Jin-Joo Park,†† and Masakazu Anpo*

Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Sakai 599-8531

†Sumitomo Elect. Fine Polymer Inc., Kumatori-cho, Osaka 590-0451

††Sumitomo Elect. Ind., LTD., Koya-kita, Itami 664-0016


(Received June 20, 2003; CL-030559)

 TiO_2 photocatalysts loaded on Si_3N_4 (TiO_2/Si_3N_4) prepared by an impregnation method showed higher photocatalytic activity for the degradation of 2-propanol diluted in water than TiO_2 loaded on SiO_2 (TiO_2/SiO_2). The formation of well-crystallized TiO_2 on Si_3N_4 and the hydrophobic property of Si_3N_4 were found to be related to the efficient photocatalytic activity of TiO_2/Si_3N_4 .

The design of highly efficient photocatalytic systems which work for the reduction of global atmospheric pollution and the purification of polluted water is of vital interest and one of the most desirable yet challenging goals in the research of environmentally-friendly catalysts. TiO₂ semiconductor photocatalysts are known as one of the most stable and highly active catalysts. Also the utilization of extremely small TiO₂ particles as photocatalysts has recently attracted a great deal of attention, especially for such environmental applications. 1-5 On the other hand, Si₃N₄ has high mechanical strength and is easy to be molded into a filter.⁶ Although it may be a useful support for photocatalysts used in liquid phase, there have been no reports on the properties of TiO₂ photocatalysts loaded on Si₃N₄. In the present study, we deal with the preparation and characterization of TiO₂ photocatalysts loaded on Si₃N₄ and carried out its successful utilization for the photocatalytic degradation of 2-propanol diluted in water. Moreover, the advantages of Si₃N₄ as the support for TiO₂ photocatalysts have been clarified.

Powders of α -Si₃N₄ (Ube-Ind. Co., surface area: $11 \text{ m}^2\text{g}^{-1}$) and SiO₂ (Aerosil Co., 287 m²g⁻¹) were used as catalyst supports. TiO₂/Si₃N₄ (10 wt % as TiO₂) was prepared by an impregnation method, as follows: Si₃N₄ was impregnated with an aqueous solution of $(NH_4)_2[TiO(C_2O_4)_2]2H_2O$ at 323 K, and then evaporated at 343 K. The obtained sample was dried at 373 K for 12h and then calcined in air at 773 K for 5h. TiO₂/SiO₂ (10 wt % as TiO₂) was also prepared by the same method. The XANES spectra were obtained in the fluorescence mode at the BL-9A facility of the Photon Factory at the National Laboratory for High Energy Physics, Tsukuba. The photocatalyst (50 mg) was transferred into a quartz cell with an aqueous solution of 2-propanol $(2.6 \times 10^{-3} \text{ mol dm}^{-3}, 25 \text{ mL})$. Prior to UV irradiation, the suspension was stirred for 1h under dark conditions. The sample was then irradiated at 295 K using UV light ($\lambda > 250 \,\mathrm{nm}$) from a 100 W high-pressure Hg lamp with continuous stirring under O₂ atmosphere in the system. The products were analyzed by gas chromatography.

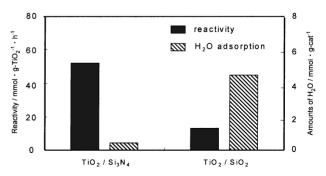

Figure 1 shows the reaction time profiles of the liquid-phase photocatalytic reaction on the TiO_2/Si_3N_4 photocatalyst. In the initial stage of the reaction under dark conditions, the adsorp-

Figure 1. Photocatalytic degradation of 2-PrOH on the TiO_2/Si_3N_4 photocatalyst.

tion of 2-propanol onto the photocatalysts can be observed. The amount of adsorbed 2-propanol observed on $\mathrm{Si}_3\mathrm{N}_4$ support was 1.8 times (normalized by weight of support) and 45 times (normalized by surface area of support) larger than those of SiO_2 support. When UV light is turned on, 2-propanol is decomposed into acetone, CO_2 and $\mathrm{H}_2\mathrm{O}$, and finally, acetone is also decomposed into CO_2 and $\mathrm{H}_2\mathrm{O}$.

Figure 2 shows the photocatalytic activities for the degradation of 2-propanol diluted in water and the saturated amount of $\rm H_2O$ adsorption at 298 K observed on both the $\rm TiO_2/Si_3N_4$ and $\rm TiO_2/SiO_2$ photocatalysts. These activities are the averaged values observed for the initial stage by 50% conversion of 2-propanol. $\rm TiO_2/Si_3N_4$ clearly exhibits higher photocatalytic activity than $\rm TiO_2/SiO_2$. The amount of $\rm H_2O$ adsorption on $\rm TiO_2/Si_3N_4$ is much smaller than $\rm TiO_2/SiO_2$, suggesting that the hydrophobic property of $\rm TiO_2/Si_3N_4$ is one of the most important factors in the efficient photocatalytic activity for the liquid phase reaction. $^{4-7}$ These results indicate that $\rm TiO_2/Si_3N_4$ photocatalyst is

Figure 2. Photocatalytic activity for the degradation of 2-PrOH and the saturated amount of H_2O adsorption at 298 K observed on the TiO_2/Si_3N_4 and TiO_2/SiO_2 photocatalysts.

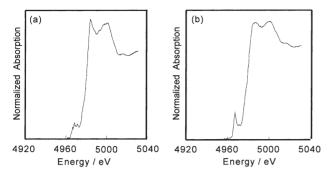


Figure 3. XANES spectra of TiO_2/Si_3N_4 (a) and TiO_2/SiO_2 (b) photocatalysts.

more effective for the degradation of organic compounds diluted in water than the TiO₂/SiO₂ photocatalyst.

In the XRD analysis, both the TiO₂/Si₃N₄ and TiO₂/SiO₂ photocatalysts calcined at 773 K exhibited no peak due to the crystallized phases, indicating that the TiO2 species exist in an amorphous phase or as ultrafine particles. Figure 3 shows the XANES spectra of TiO₂/Si₃N₄ and TiO₂/SiO₂. The spectra at the Ti K-edge shows several well-defined preedge peaks which are related to the local structure surrounding the Ti atom. The relative intensities of these preedge peaks provide useful information on the coordination number of the Ti atom. ^{7–9} TiO₂/ Si₃N₄ has three small well-defined preedge peaks which can be assigned to the presence of the anatase TiO₂ species (octahedral coordination) with high crystallinity. On the other hand, TiO₂/ SiO₂ has only one intense peak, indicating the presence of amorphous TiO2 species or tetrahedral coordinated titanium oxide species. These results indicate that the titanium oxide species can be crystallized easily to form anatase TiO2 ultrafine particles on the support of hydrophobic Si₃N₄.

In summary, it has been found that TiO2/Si3N4 exhibits

high photocatalytic activity for the degradation of organic compounds diluted in water due to the hydrophobic property of the Si_3N_4 support and the higher crystallinity of the TiO_2 photocatalyst. Since Si_3N_4 is mechanically strong enough to be used as a filter for water purification, it is a good candidate for the support of TiO_2 photocatalysts used in liquid phase reactions.

This work has been supported in part by a Grant-in-Aid of the Ministry of Education, Culture, Sports, Science and Technology of Japan. The X-ray absorption experiments were performed at the Photon Factory of KEK (2001G115) with helpful advice from Prof. M. Nomura. We would like express our gratitute for their support.

References

- S. Ikeda, N. Sugiyama, S. Murakami, H. Kominami, Y. Kera, H. Noguchi, K. Uosaki, T. Torimoto, and B. Ohtani, *Phys. Chem. Chem. Phys.*, 5, 778 (2003).
- H. Kominami, S. Murakami, J. Kato, Y. Kera, and B. Ohtani, J. Phys. Chem. B, 106, 10501 (2002).
- 3 T. Tanaka, K. Teramura, K. Arakaki, and T. Funabiki, Chem. Commun., 2002, 2742.
- 4 S. Horikoshi, H. Hidaka, and N. Serpone, *Environ. Sci. Technol.*, **36**, 1357 (2002).
- 5 C. Ooka, H. Yoshida, M. Horio, K. Suzuki, and T. Hattori, Appl. Catal., B, 41, 313 (2003).
- C. Kawai and A. Yamakawa, J. Ceram. Soc. Jpn., 107, 961 (1999).
- 7 H. Yamashita, K. Ikeue, T. Takewaki, and M. Anpo, *Top. Catal.*, 18, 95 (2002).
- 8 K. Ikeue, H. Yamashita, T. Takewaki, and M. Anpo, *J. Phys. Chem. B*, **105**, 8350 (2001).
- J. M. Thomas and G. Sankar, Acc. Chem. Res., 34, 571 (2001).